La régression linéaire est une technique qui peut être utilisée pour faire des prédictions ou des estimations. Elle peut être utilisée pour établir une relation linéaire entre une variable dépendante et une variable explicative ou un ensemble de facteurs. Elle a un large éventail d'applications potentielles, tant au niveau académique que professionnel. Continuez à lire cet extrait pour en savoir plus.
Une définition de la régression linéaire
La forme la plus simple de régression linéaire sur un ensemble de points de données consiste à choisir une ligne droite qui passe par tous les points de données les plus proches de l'origine (également appelée axe d'asymétrie). Vous pouvez retenir le précédent comme la définition d'une régression linéaire. Le détails parfait, retrouvez le ici. L'objectif est d'évaluer une variable indépendante par rapport à une variable explicative le long des axes des abscisses et des ordonnées. Dans une régression linéaire multivariée, il y aura toujours au moins deux variables explicatives. En réponse à un ensemble de points d'entraînement, cet algorithme entrera dans une phase d'apprentissage (apprentissage automatique), qui aboutira à la production de prédictions basées sur d'autres données d'entraînement. Une situation mal utilisée ? À l'aide d'une analyse de régression linéaire des données de vente, vous pouvez déterminer si vos clients ont tendance à faire des achats à des jours ou à des heures spécifiques. Les gestionnaires peuvent utiliser les informations tirées d'une analyse de régression pour se préparer aux pics de demande.
Les idées fondamentales de l'analyse de régression linéaire
Le processus de régression linéaire consiste à tracer une ligne aussi proche que possible des points de données lorsque ceux-ci forment un nuage de forme irrégulière qui suggère une relation statistique explicative. Vous pouvez calculer une approximation du pourcentage de la variable. Par exemple, le pourcentage de fumeurs par rapport au nombre total d'années.